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Abstract 

In biomedical informatics, assigning drug codes to categories is a common step in the analysis pipeline. 
Unfortunately, incomplete mappings are the norm rather than the exception with coverage values less than 85% not 
uncommon. Here, we perform this linking task on a nationwide insurance claims database with over 13 million 
members who were dispensed, according to National Drug Codes (NDCs), over 50,000 unique product forms of 
medication. The chosen approach employs Cerner Multum’s VantageRx and the U.S. National Library of 
Medicine’s RxMix. As a result, 94.0% of the NDCs were successfully mapped to categories used by common drug 
terminologies, e.g., Anatomical Therapeutic Chemical (ATC). Implemented as an SQL database and scripts, the 
approach is generic and can be setup for a new data set in a few hours. Thus, the method is a viable option for 
large-scale drug classification. 

Introduction 

Across clinics and hospitals, patient information continuously streams into electronic health records. The databases 
are designed to handle clinical and billing requirements, but also have a secondary use where analysis of patterns 
and trends leads to medical insights1, 2, 3, 4, 5, 6. For example, consider the hypothetical situation of 10,000 individuals 
diagnosed with the same medical condition. Suppose there were two relevant classes of drugs, differing by 
mechanism of action, and about half were treated with one drug and half the other. After follow up, the data could 
give insight into which type of drug is more effective "in the wild." In combination with randomized clinical trials 
and expert panels, such predictive analytics promises to expand and refine clinical guidelines, thereby bettering 
medical care. 

This promise can only be fulfilled, however, if we can make sense of the data. Here, our particular focus is on 
matching data values to meaningful concepts. In the example above, it's critical we know the drug type given to each 
patient, but unfortunately what is often recorded is a cryptic drug code and perhaps a non-standardized, textual 
description. The matching of drug codes/descriptions to active ingredients or drug categories is a typical step in 
biomedical informatics, but an agreed upon, consistent, effective method is still an active topic of research7, 8, 9, 10. 

National Drug Codes (NDCs) are a classification system used in the medication information supply chain. An NDC 
identifier is a string of 11 digits. The first 4-5 digits denote the FDA provided drug labeler's number, while the 
remaining are chosen by the labeler. An NDC is assigned to each variation of the labeled drug product, so there can 
be many NDCs for one active ingredient that differ by brand name, strength, route of administration, and/or 
packaging with other medications, e.g., drug pack. Unfortunately, there is no consistent subset of digits within an 
NDC to indicate the medication’s active ingredients. For example, both “52959050506” and “00093202631” contain 
azithromycin. 

NDCs can be classified using several terminology systems. For example, the National Drug File – Reference 
Terminology (NDF-RT), provided by the Veterans Health Administration, can group medications by mechanism of 
action11. The Anatomical Therapeutic Chemical (ATC) Classification System, provided by the WHO Collaborating 
Centre for Drug Statistics Methodology, operates more strictly on a hierarchy, with its second level organizing 
substances by therapeutic purpose12. The active ingredient functions as a central concept common to these 
ontologies. So in principle, once an NDC is linked to an active ingredient, we can choose the most appropriate 
categorization system for a given analysis. 
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Our method implements this idea by first assigning active ingredient(s) to each NDC, using the VantageRx 
commercial database sold by Cerner Multum13. Then, both VantageRx and RxMix, a web-based service developed 
by the National Library of Medicine14, enable mapping to various categories in the Multum, NDF-RT, ATC, 
MESH15, DAILYMED16, and FDASPL17 terminologies. Built within an SQL database, our solution can operate on 
large-scale data sets, with hundreds of thousands of NDCs. Unlike the practice of manually assembling custom 
dictionaries for each drug class, the constructed tables can be reused with a minimum of editing. 

Here, we explain our methodology, and describe an evaluation procedure, based on a large-scale insurance claims 
data set. Our results yield a 94.0% mapping coverage rate for the Multum categorization system. This is a step 
forward in performance, since the percentages in existing studies can be 80% or lower7. Furthermore, the whole 
classification process for a new data set is estimated to take only a few hours using a commodity server. While we 
cover the work's limitations and point out the additional work needed to fully develop and vet the technique, we 
view the progress to date as an advancement in large-scale drug classification from NDCs and, thus, a significant 
contribution to clinical analytics. 

Drug Classification Methods 

Figure 1 gives an overview of how the solution, implemented in a Microsoft SQL Server database and scripts, is 
used and works. The NDCs one wishes to classify are directly linked to a main Multum drug code, i.e. identifier. For 
those NDCs not directly linked, an attempt is made to match on their associated description strings. Once linked to a 
Multum drug code, classification can be accomplished via either VantageRx's own categories or a map generated by 
RxMix. The end result is a lookup table, which indicates the classification(s) assigned to each NDC. 

 

 
Figure 1. Conceptual overview of large-scale drug classification method. 

Most of the linking leverages the VantageRx database by Multum Cerner. One purpose of the tables is to link NDCs.  
Other features include drug-drug interactions, synonyms for drug names, as well as therapeutic categories, the latter 
of which we also employ. Our version of the database is from 2011. In 2009, a study evaluated various databases' 
ability to link NDCs from 13 sources (both inpatient and outpatient, # records >190,000 ) and found the Multum 
tables to be one of the better choices7. Multum and RxNorm18 tied for the #1 spot overall at 84.1% of the NDCs 
covered, on average. As an initial check, both Multum and RxNorm were used to link the NDCs in our test case 
using one of the standard procedures offered in their documentation. Multum's coverage was 77.8%, where as 
RxNorm's was 60.0%. For these reasons, VantageRx forms our method's core. 

Per Figure 1, the first use of VantageRx is to filter out known non-medication NDCs. The database has tables 
pertaining specifically to medical supplies and their associated NDCs. Additionally, we make use of the provided 
description string to filter out known supplies, such as the substring "NEEDLE." Once accomplished, the next step 
is an inner join on a central VantageRx table to secure a main drug code in the Multum lexicon. 

 



  

The overwhelming majority of NDCs are linked this way, but those not recognized can sometimes be identified by 
their associated description string. Multum's primary name for each drug is compared to the description string of 
each unmatched NDC, e.g. NDC = "60429078545" with Description = "WARFARIN     TAB 2MG".  The 
procedure exploits the fact that some of the description strings follow a known convention. For example, in our 
Warfarin case, the first word in the string denotes the drug's active ingredient.  Since the Multum name typically 
follows the convention of a label followed by a strength and route of administration, we extract the only the label for 
comparison. Note, as in our example, that the substring matching only connects NDCs with active ingredients or 
brand names, not dosing strength nor route of administration. Since the objective here is drug classification, rather 
than medication reconciliation or dose adjustment, however, this is typically not a concern. 

Using the main drug name, the medication can be mapped to Multum defined drug categories, or for additional 
classification systems, we can link to Multum ingredient codes. The power of the ingredient codes is that they are 
included in RxMix, a web-based service provided by the National Library of Medicine (NLM). RxMix permits one 
to setup a cascade of calls to RxNorm, RxTerms, RxClass, NDF-RT, and related APIs. Our solution has three calls. 
First, it links Multum ingredient IDs to their corresponding RxNorm concept unique identifiers (CUIs), using the 
“findRxcuiById” function. Second, those CUIs are linked to related ingredient concepts, such as precise ingredient 
names by the “getRelatedByType” function. Finally, categories within the ATC, MESH, NDFRT, DAILYMED, 
FDASPL systems are found via the “getClassByRxNormDrugId” function. Specifically, ATC provides a 
categorization system with four levels. MESH gives the “MeSH Pharmacologic Actions” categories. DAILYMED 
and FDASPL provide three different ways to categorize drugs: “Established Pharmacologic Class”, “Mechanism of 
Action”, and “Physiologic Effect”. Finally, NDF-RT delivers four category sets: “Diseases, Manifestations or 
Physiologic States”, “Cellular or Molecular Interactions”, “Physiological Effects”, and “Clinical Kinetics.” Note that 
the final output is a one-to-many relationship. A single NDC can map to multiple ingredients, each of which can 
then map to many categories across several classification systems. For example, NDC 63304058730 contains 
atorvastatin and amlodipine besylate. The ingredients map to different ATC categories (HMG CoA reductase 
inhibitors and Dihydropyridine derivatives respectively) and as well as two Multum classes (antihyperlipidemic 
combinations and antihyperlipidemic combinations). 

Evaluation Methods 

In order to evaluate the classification method, we applied it to prescription fills in a large insurance claims data set. 
These records were supplied from a nationwide data warehouse, and cover the period January 2010 to May 2013. 
The data was considered large-scale by several counts (Table 1). Of particular interest, there were the 51,490 unique 
NDCs, which is on par with other large-scale studies7. They, along with their respective description strings, were 
extracted from the data set and organized in a table within the MS SQL server database. We ran the SQL scripts in 
Microsoft SQL Server 2012 on a Dell R610 server with 48GB of RAM and a 6 core Xeon CPU running Windows 
Server 2012. The final and intermediate outputs took the form of SQL tables. 

Table 1. Counts of key attributes in the evaluation data set. 

# records 348,033,664 

# members 13,044,428 

# pharmacies 60,863 

# unique NDCs 51,490 

 

To evaluate these results, the primary metric was percent coverage of each terminology, i.e. the fraction of NDCs in 
the evaluation data set mapped to each system. For the mapped NDCs, error checking was done by randomly 
selecting 500 entries for manual inspection. For each entry, we checked whether the correct ingredient and ATC 
category was assigned to the NDC. We recognize the sample is not large enough to ascertain a complete picture of 
the method’s accuracy. Instead, the inspection was to provide some evidence of the procedure’s performance. 
Inspection tools included the NDDF BioPortal website19, the National Library of Medicine’s DailyMed website20, 
Lexicomp, a tool used by the Boston Children's Hospital formulary, and the World Health Organization’s ATC 
online search query tool21. 



  

Results 

Using two 2.4GHz processors, the method took less than 3 minutes to generate a classification table with 983,339 
rows (Table 2 gives an excerpt). An NDC, Trizivir tablet, is shown along with the respective description strings and 
assigned categories. Apparent from the table are the one-to-many relationships, going from the NDC to its 
categories. The branching is because Trizivir contains three active ingredients: Abacavir, Lamivudine, Zidovudine. 
Each active ingredient, in turn, can be represented in more than one classification system. 

 

Table 2. Excerpt from output table. 

NDC Description 
Class 

System Class Code Class Description 

49702021718 TRIZIVIR TAB  ATC J05AF 
Nucleoside and nucleotide reverse 

transcriptase inhibitors 

49702021718 TRIZIVIR TAB  ATC J05AR 
Antivirals for treatment of HIV 

infections, combinations 

49702021718 TRIZIVIR TAB  MESH D000963 Antimetabolites 

49702021718 TRIZIVIR TAB  MESH D018894 Reverse Transcriptase Inhibitors 

49702021718 TRIZIVIR TAB  MESH D019380 Anti-HIV Agents 

49702021718 TRIZIVIR TAB  Multum 327 antiviral combinations 

 

In contrast, Table 3 shows a random sample of 8 NDCs that did not match. Some of the NDCs have drug 
descriptions that appear to be truncated, e.g. "HYDROCO" likely for hydrocodone. Others, such as "CVS 
ALLERGY TAB 180MG", have descriptions that do not directly indicate the active ingredients and have NDCs that 
could not be found in RxNorm.  However, in an analysis of 20 unmapped NDCs, 9 did appear in the RxNorm 
ontology. 3,124 out of 51,490 NDCs were filtered out as being non-drug related.  45,508 out of the remaining 
48,366 NDCs (94.0%) were assigned to one or more Multum categories. Multum had the highest coverage because 
VantageRx ensures that every Multum drug identifier has at least one assigned category in the Multum system. 
Figure 2 details unique counts of NDCs, drug codes, ingredients, and categories at major steps. Table 4 lists each 
classification system’s coverage. Since each NDC can map to many ingredients and each ingredient be linked to 
several categories across the different classification systems, each NDC was typically associated with many drug 
categories. Subsequently, each NDC, on average, was associated with 21.6 categories over the six drug classification 
systems. 

 

Table 3. Examples of unmatched NDCs. 

NDC Description 

68115057200 METHADONE    TAB 5MG 

68258903601 XELODA       TAB 500MG 

43353072153 HYDROCO/APAP TAB 7.5-325 

50428847260 CVS ALLERGY  TAB 180MG 

43353076780 BUPROPION    TAB 100MG 

21695085701 NECON        TAB 1/35 

00403107920 AUGMENTIN    TAB 875MG 

54868535502 ETOPOSIDE    CAP 50MG 

 



  

 

 

 
Figure 2. Evaluation results where numbers denote unique counts. 

 

Table 4. Coverage results for each classification system. 

Coverage Number of NDCs 
(Percentage) 

Total in Data Set 48,366 (100%) 

ATC 42,780 (88%) 

DAILYMED 37,852 (78%) 

FDASPL 39,451 (82%) 

MESH 41,416 (86%) 

Multum 45,508 (94%) 

NDFRT 42,578 (88%) 

 

Two errors were found (0.4% error rate), during the visual inspection and manual search of 500 randomly sampled 
entries in the generated NDC-to-drug-classification table. NDC 51079094701 – “DILTIAZEM    CAP 120MG ER” 
was correctly mapped to the ingredient diltiazem hydrochloride and NDC 67544064045 = “LORAZEPAM    TAB 
1MG” was correctly mapped to the ingredient lorazepam, but both were also associated with dextrose. Dextrose is 
associated with another packaging form and route of administration.  

Discussion 

The method achieves 94.0% coverage, a noticeable achievement over our initial attempts using simple, direct 
applications of RxNorm (60.0%) or Multum (77.8%). For the large scale insurance claims data set we used in our 
evaluation, the 94.0% coverage allowed 98.2% of the prescription claims to be categorized. The high coverage 
suggests that the unmapped NDCs have a low prevalence in the dataset. Compared to prior studies, the achieved 
coverage is unusually high, although a rigorous comparison is difficult because the evaluation sets are different. One 
key difference is our classification technique relies on both an NDC and a description string. We leverage the fact 
that most operational databases contain such a description column to permit human readability. 

 



  

The evaluation included a spot analysis, where promisingly, nearly half (9 out of 20) of the unassigned NDCs could 
be identified using RxNorm. In related work, 84.2% of NDCs were successfully mapped using RxNorm, when also 
considering obsolete NDCs present in earlier versions of RxNorm22. This finding suggests an appropriate next step 
in the development would be to link both through Multum and RxNorm. Better leveraging the drug descriptions 
associated with the NDCs is another direction for future research. We used a simple string processing approach for 
excerpting the first word in the description and attempting to directly match it with the first segment of the Multum 
name. Yet, some of the NDCs' description strings appear truncated from their commonly used names. Perhaps then, 
more sophisticated text processing algorithms would increase the string match success rate.  Additionally, we used a 
2011 version of VantageRx because it was available to us, even though the evaluation data set ranged from 2010 to 
2013. Thus, merging with RxNorm, enhancing the string processing, and upgrading VantageRx might achieve 
further reductions in unassignment rates. 

We also took a small sample (500 rows – 0.05%) of the output table, manually checked the assignments, and found 
only two errors. This provides evidence of a high degree of accuracy, but the sample size is admittedly small. Given 
the size of our data set, more checking, particularly among the string matched mappings would be desirable. 
However, with such a large number of relations, manually vetting a significant fraction of the records is intractable. 
In fact, previous studies have shown that errors are known to exist within formal ontology systems23. One possibility 
would be to run two other drug classifications procedures and inspect situations where these other two procedures 
agree with each other, but not the method presented here. 

Using a dedicated server, our implementation generated drug classification assignments in under 3 minutes. The 
solution is nearly automated, with only two areas requiring modification when working with a new data set. There 
are two string manipulations, one to help to pre-filter out non-drug identifiers and the other to process the 
description strings for matching. This method can be reused for any analysis off of the data set, or even when new 
records are entered into the database in question. 

Conclusion 

This pipeline is a viable solution for classifying NDCs. Key to the high coverage rates is the performance of the 
string matching routine. The solution is designed for large-scale drug classification tasks and indeed the solution 
completed its processing in a timely manner, particularly considering that each NDC is mapped to many categories 
across several classifications system simultaneously. Thus, we feel that the technology is a useful option whenever 
NDCs within a large-scale database require classification. Indeed, few doubt the value of such databases; the 
method's contribution is a useful tool for converting that data into information from which to glean biomedical 
insights. 
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